Álgebra
Para los usos matemáticos de la palabra álgebra como estructura algebraica, véase álgebra no asociativa, álgebra asociativa, álgebra sobre un cuerpo.
El álgebra es la rama de las matemáticas que estudia las estructuras, las relaciones y las cantidades (en el caso del álgebra elemental). Junto a la geometría, el análisis matemático, la combinatoria y la teoría de números, el álgebra es una de las principales ramas de la matemática.
Para los usos matemáticos de la palabra álgebra como estructura algebraica, véase álgebra no asociativa, álgebra asociativa, álgebra sobre un cuerpo.
El álgebra es la rama de las matemáticas que estudia las estructuras, las relaciones y las cantidades (en el caso del álgebra elemental). Junto a la geometría, el análisis matemático, la combinatoria y la teoría de números, el álgebra es una de las principales ramas de la matemática.
EJEMPLO:
La palabra «álgebra» es de origen árabe, deriva del tratado escrito por el matemático persa Muhammad ibn Musa al-Jwarizmi, titulado Al-Kitab al-Jabr wa-l-Muqabala (en árabe كتاب الجبر والمقابلة) (que significa "Compendio de cálculo por el método de completado y balanceado"), el cual proporcionaba operaciones simbólicas para la solución sistemática de ecuaciones lineales y cuadráticas. Etimológicamente, la palabra «álgebra» (también nombrado por los árabes Amucabala) proviene por lo tanto del árabe y significa "reducción", operación de cirugía por la cual se reducen los huesos luxados o fraccionados (algebrista era el médico reparador de huesos).
Álgebra elemental
Álgebra elemental es la forma más básica del álgebra. A diferencia de la aritmética, en donde solo se usan los números y sus operaciones aritméticas (como +, −, ×, ÷), en álgebra los números son representados por símbolos (usualmente a, b, c, x, y, z). Esto es útil porque:
Permite la formulación general de leyes de aritmética (como a + b = b + a), y esto es el primer paso para una exploración sistemática de las propiedades de los números reales.
Permite referirse a números "desconocidos", formular ecuaciones y el estudio de cómo resolverlas.
Permite la formulación de relaciones funcionales
Estructura algebraica
En la matemática, una estructura algebraica es un conjunto de elementos con unas propiedades operacionales determinadas; es decir, lo que define a la estructura del conjunto son las operaciones que se pueden realizar con los elementos de dicho conjunto y las propiedades matemáticas que dichas operaciones poseen. Un objeto matemático constituido por un conjunto no vacío y algunas leyes de composición interna definida en él es una estructura algebraica.
Álgebra elemental
Álgebra elemental es la forma más básica del álgebra. A diferencia de la aritmética, en donde solo se usan los números y sus operaciones aritméticas (como +, −, ×, ÷), en álgebra los números son representados por símbolos (usualmente a, b, c, x, y, z). Esto es útil porque:
Permite la formulación general de leyes de aritmética (como a + b = b + a), y esto es el primer paso para una exploración sistemática de las propiedades de los números reales.
Permite referirse a números "desconocidos", formular ecuaciones y el estudio de cómo resolverlas.
Permite la formulación de relaciones funcionales
Estructura algebraica
En la matemática, una estructura algebraica es un conjunto de elementos con unas propiedades operacionales determinadas; es decir, lo que define a la estructura del conjunto son las operaciones que se pueden realizar con los elementos de dicho conjunto y las propiedades matemáticas que dichas operaciones poseen. Un objeto matemático constituido por un conjunto no vacío y algunas leyes de composición interna definida en él es una estructura algebraica.